Publication List

These are my first author papers, for my full publication list please follow this:

https://tinyurl.com/3vf2euvf

Extremely massive disc galaxies in the nearby Universe form through gas-rich minor mergersIn our hierarchical structure-formation paradigm, the observed morphological evolution of massive galaxies -- from rotationally-supported discs to dispersion-dominated spheroids -- is largely explained via galaxy merging. However, since mergers are likely to destroy discs, and the most massive galaxies have the richest merger histories, it is surprising that any discs exist at all at the highest stellar masses. Recent theoretical work by our group has used a cosmological, hydrodynamical simulation to suggest that extremely massive (M* > 10^11.4 MSun) discs form primarily via minor mergers between spheroids and gas-rich satellites, which create new rotational stellar components and leave discs as remnants. Here, we use UV-optical and HI data of massive galaxies, from the SDSS, GALEX, DECaLS and ALFALFA surveys, to test these theoretical predictions. Observed massive discs account for ~13% of massive galaxies, in good agreement with theory (~11%). ~64% of the observed massive discs exhibit tidal features, which are likely to indicate recent minor mergers, in the deep DECaLS images (compared to ~60% in their simulated counterparts). The incidence of these features is at least four times higher than in low-mass discs, suggesting that, as predicted, minor mergers play a significant (and outsized) role in the formation of these systems. The empirical star-formation rates agree well with theoretical predictions and, for a small galaxy sample with HI detections, the HI masses and fractions are consistent with the range predicted by the simulation. The good agreement between theory and observations indicates that extremely massive discs are indeed remnants of recent minor mergers between spheroids and gas-rich satellites.
Dark-matter-deficient dwarf galaxies form via tidal stripping of dark matter in interactions with massive companionsIn the standard Lambda-CDM paradigm, dwarf galaxies are expected to be dark-matter-rich, as baryonic feedback is thought to quickly drive gas out of their shallow potential wells and quench star formation at early epochs. Recent observations of local dwarfs with extremely low dark matter content appear to contradict this picture, potentially bringing the validity of the standard model into question. We use NewHorizon, a high-resolution cosmological simulation, to demonstrate that sustained stripping of dark matter, in tidal interactions between a massive galaxy and a dwarf satellite, naturally produces dwarfs that are dark-matter-deficient, even though their initial dark matter fractions are normal. The process of dark matter stripping is responsible for the large scatter in the halo-to-stellar mass relation in the dwarf regime. The degree of stripping is driven by the closeness of the orbit of the dwarf around its massive companion and, in extreme cases, produces dwarfs with halo-to-stellar mass ratios as low as unity, consistent with the findings of recent observational studies. ~30 per cent of dwarfs show some deviation from normal dark matter fractions due to dark matter stripping, with 10 per cent showing high levels of dark matter deficiency (Mhalo/M*<10). Given their close orbits, a significant fraction of dark-matter-deficient dwarfs merge with their massive companions (e.g. ~70 per cent merge over timescales of ~3.5 Gyrs), with the dark-matter-deficient population being constantly replenished by new interactions between dwarfs and massive companions. The creation of these galaxies is, therefore, a natural by-product of galaxy evolution and their existence is not in tension with the standard paradigm.
The origin of low-surface-brightness galaxies in the dwarf regimeLow-surface-brightness galaxies (LSBGs) -- defined as systems that are fainter than the surface-brightness limits of past wide-area surveys -- form the overwhelming majority of galaxies in the dwarf regime (M* < 10^9 MSun). Using NewHorizon, a high-resolution cosmological simulation, we study the origin of LSBGs and explain why LSBGs at similar stellar mass show the large observed spread in surface brightness. New Horizon galaxies populate a well-defined locus in the surface brightness -- stellar mass plane, with a spread of ~3 mag arcsec^-2, in agreement with deep SDSS Stripe data. Galaxies with fainter surface brightnesses today are born in regions of higher dark-matter density. This results in faster gas accretion and more intense star formation at early epochs. The stronger resultant supernova feedback flattens gas profiles at a faster rate which, in turn, creates shallower stellar profiles (i.e. more diffuse systems) more rapidly. As star formation declines towards late epochs (z<1), the larger tidal perturbations and ram pressure experienced by these systems (due to their denser local environments) accelerate the divergence in surface brightness, by increasing their effective radii and reducing star formation respectively. A small minority of dwarfs depart from the main locus towards high surface brightnesses, making them detectable in past wide surveys. These systems have anomalously high star-formation rates, triggered by recent, fly-by or merger-driven starbursts. We note that objects considered extreme/anomalous at the depth of current datasets, e.g. `ultra-diffuse galaxies', actually dominate the predicted dwarf population and will be routinely visible in future surveys like LSST.
Why do extremely massive disc galaxies exist today?Galaxy merger histories correlate strongly with stellar mass, largely regardless of morphology. Thus, at fixed stellar mass, spheroids and discs share similar assembly histories, both in terms of the frequency of mergers and the distribution of their mass ratios. Since mergers are the principal drivers of disc-to-spheroid morphological transformation, and the most massive galaxies typically have the richest merger histories, it is surprising that discs exist at all at the highest stellar masses (e.g. beyond the knee of the mass function). Using Horizon-AGN, a cosmological hydro-dynamical simulation, we show that extremely massive (M*> 10^11.4 MSun) discs are created via two channels. In the primary channel (accounting for ~70% of these systems and ~8% of massive galaxies) the most recent, significant merger (stellar mass ratio > 1:10) between a massive spheroid and a gas-rich satellite `spins up' the spheroid by creating a new rotational stellar component, leaving a massive disc as the remnant. In the secondary channel (accounting for ~30% of these systems and ~3% of massive galaxies), a system maintains a disc throughout its lifetime, due to an anomalously quiet merger history. Not unexpectedly, the fraction of massive discs is larger at higher redshift, due to the Universe being more gas-rich. The morphological mix of galaxies at the highest stellar masses is, therefore, a strong function of the gas fraction of the Universe. Finally, these massive discs have similar black-hole masses and accretion rates to massive spheroids, providing a natural explanation for why a minority of powerful AGN are surprisingly found in disc galaxies.


Massive spheroids can form in single minor mergersUnderstanding how rotationally-supported discs transform into dispersion-dominated spheroids is central to our comprehension of galaxy evolution. Morphological transformation is largely merger-driven. While major mergers can efficiently create spheroids, recent work has highlighted the significant role of other processes, like minor mergers, in driving morphological change. Given their rich merger histories, spheroids typically exhibit large fractions of `ex-situ' stellar mass, i.e. mass that is accreted, via mergers, from external objects. This is particularly true for the most massive galaxies, whose stellar masses typically cannot be attained without a large number of mergers. Here, we explore an unusual population of extremely massive (M* > 10^11 MSun) spheroids, in the Horizon-AGN simulation, which exhibit anomalously low ex-situ mass fractions, indicating that they form without recourse to significant merging. These systems form in a single minor-merger event (with typical merger mass ratios of 0.11 - 0.33), with a specific orbital configuration, where the satellite orbit is virtually co-planar with the disc of the massive galaxy. The merger triggers a catastrophic change in morphology, over only a few hundred Myrs, coupled with strong in-situ star formation. While this channel produces a minority (~5 per cent) of such galaxies, our study demonstrates that the formation of at least some of the most massive spheroids need not involve major mergers -- or any significant merging at all -- contrary to what is classically believed.
The formation and evolution of low-surface-brightness galaxiesOur statistical understanding of galaxy evolution is fundamentally driven by objects that lie above the surface-brightness limits of current wide-area surveys (mu ~ 23 mag arcsec^-2). While both theory and small, deep surveys have hinted at a rich population of low-surface-brightness galaxies (LSBGs) fainter than these limits, their formation remains poorly understood. We use Horizon-AGN, a cosmological hydrodynamical simulation to study how LSBGs, and in particular the population of ultra-diffuse galaxies (UDGs; mu > 24.5 mag arcsec^-2), form and evolve over time. For M* > 10^8 MSun, LSBGs contribute 47, 7 and 6 per cent of the local number, mass and luminosity densities respectively (~85/11/10 per cent for M* > 10^7 MSun). Today's LSBGs have similar dark-matter fractions and angular momenta to high-surface-brightness galaxies (HSBGs; mu < 23 mag arcsec^-2), but larger effective radii (x2.5 for UDGs) and lower fractions of dense, star-forming gas (more than x6 less in UDGs than HSBGs). LSBGs originate from the same progenitors as HSBGs at z > 2. However, LSBG progenitors form stars more rapidly at early epochs. The higher resultant rate of supernova-energy injection flattens their gas-density profiles, which, in turn, creates shallower stellar profiles that are more susceptible to tidal processes. After z ~ 1, tidal perturbations broaden LSBG stellar distributions and heat their cold gas, creating the diffuse, largely gas-poor LSBGs seen today. In clusters, ram-pressure stripping provides an additional mechanism that assists in gas removal in LSBG progenitors. Our results offer insights into the formation of a galaxy population that is central to a complete understanding of galaxy evolution, and which will be a key topic of research using new and forthcoming deep-wide surveys.